Protein and lipid rotational dynamics in cardiac and skeletal sarcoplasmic reticulum detected by EPR and phosphorescence anisotropy.
نویسندگان
چکیده
We have used time-resolved phosphorescence anisotropy and electron paramagnetic resonance (EPR) spectroscopy to detect the rotational dynamics of the Ca-ATPase and its associated lipids in dog cardiac sarcoplasmic reticulum (DCSR), in comparison with rabbit skeletal SR (RSSR), in order to obtain insight into the physical bases for different activities and regulation in the two systems. Protein rotational motions were studied with time-resolved phosphorescence anisotropy (TPA) of erythrosin isothiocyanate (ERITC) and saturation-transfer EPR (ST-EPR) of a maleimide spin-label (MSL). Both labels were attached selectively and rigidly to the Ca-ATPase. Lipid rotational motions were studied with conventional EPR of stearic acid spin-labels. As in previous studies on RSSR, the phosphorescence anisotropy decays of both preparations at 4 degrees C were multiexponential, due to the presence of different oligomeric species. The rotational correlation times for the different rotating species were similar for the two preparations, but the total decay amplitude was substantially less for cardiac SR, indicating that more of the Ca-ATPase molecules are in large aggregates in DCSR. ST-EPR spectra confirmed that the Ca-ATPase is less rotationally mobile in DCSR than in RSSR. Lipid probe mobility and fatty acid composition were very similar in the two preparations, indicating that the large differences observed in protein mobility are not due to differences in lipid fluidity. We conclude that the higher restriction in protein mobility observed by both ST-EPR and TPA is due to more extensive protein-protein interactions in DCSR than in RSSR.
منابع مشابه
Molecular dynamics in mouse atrial tumor sarcoplasmic reticulum.
We have determined directly the effects of the inhibitory peptide phospholamban (PLB) on the rotational dynamics of the calcium pump (Ca-ATPase) of cardiac sarcoplasmic reticulum (SR). This was accomplished by comparing mouse ventricular SR, which has PLB levels similar to those found in other mammals, with mouse atrial SR, which is effectively devoid of PLB and thus has much higher (unregulate...
متن کاملEffects of melittin on molecular dynamics and Ca-ATPase activity in sarcoplasmic reticulum membranes: time-resolved optical anisotropy.
We have studied the effect of melittin, a basic membrane-binding peptide, on Ca-ATPase activity and on protein and lipid dynamics in skeletal sarcoplasmic reticulum (SR), using time-resolved phosphorescence and fluorescence spectroscopy. Melittin completely inhibits Ca-ATPase activity, with half-maximal inhibition at 9 +/- 1 mol of melittin bound to the membrane per mole of ATPase (0.1 mol of m...
متن کاملThe physical mechanism of calcium pump regulation in the heart.
The Ca-ATPase in the cardiac sarcoplasmic reticulum membrane is regulated by an amphipathic transmembrane protein, phospholamban. We have used time-resolved phosphorescence anisotropy to detect the microsecond rotational dynamics, and thereby the self-association, of the Ca-ATPase as a function of phospholamban phosphorylation and physiologically relevant calcium levels. The phosphorylation of ...
متن کاملSelective detection of the rotational dynamics of the protein-associated lipid hydrocarbon chains in sarcoplasmic reticulum membranes.
We have developed a saturation transfer EPR (ST-EPR) method to measure selectively the rotational dynamics of those lipids that are motionally restricted by integral membrane proteins and have applied this methodology to measure lipid-protein interactions in native sarcoplasmic reticulum (SR) membranes. This analysis involves the measurement of spectral saturation using a series of six stearic ...
متن کاملEffects of membrane thickness on the molecular dynamics and enzymatic activity of reconstituted Ca-ATPase.
We have studied the effect of phospholipid chain length on the activity and molecular dynamics of reconstituted Ca-ATPase from skeletal sarcoplasmic reticulum (SR), using time-resolved phosphorescence anisotropy (TPA) and electron paramagnetic resonance (EPR). We used reconstituted Ca-ATPase in exogenous phosphatidylcholines with monounsaturated chains 14-24 carbons long, to determine their eff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 32 36 شماره
صفحات -
تاریخ انتشار 1993